organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

William T. A. Harrison.^a* H. S. Yathirajan,^b B. V. Ashalatha,^c K. K. Vijaya Raj^c and

570 006, India, and ^cDepartment of Chemistry, 574 199, India

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

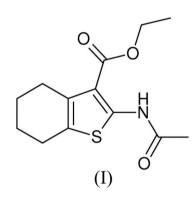
Single-crystal X-ray study T = 120 KMean $\sigma(C-C) = 0.002$ Å R factor = 0.036 wR factor = 0.091 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

B. Narayana^c

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore Mangalore University, Mangalagangotri

The geometrical parameters for the title compound, $C_{13}H_{17}NO_3S$ are normal. The planar molecular conformation is reinforced by an intramolecular $N-H\cdots O$ interaction.

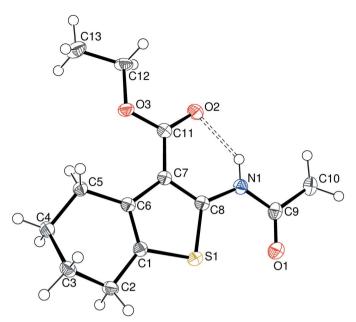

Ethyl 2-acetylamino-4,5,6,7-tetrahydro-

1-benzothiophene-3-carboxylate

Received 6 July 2006 Accepted 1 August 2006

Comment

Thiophene derivatives are known to exhibit an array of biological effects, including analgesic and anti-inflammatory activities (Ramanathan & Namboothiri, 1978; Cannito et al., 1990). As part of our own research in this area, the structure of the title compound, (I) (Fig. 1), is presented.


The geometric parameters for (I) are normal. The fivemembered C1/C2/C6/C7/S1 ring is almost planar (r.m.s. deviation from the mean plane = 0.013 Å). The C1–C6 ring is in a half-chair conformation (Table 1), with atoms C1, C2, C5 and C6 almost co-planar (r.m.s. deviation = 0.003 Å) and atoms C3 and C4 displaced from this plane by -0.480(3) and 0.277 (3) Å, respectively. An intramolecular N-H···O bond (Table 2) helps to establish the molecular conformation. Overall, the molecule of (I) is approximately planar.

The molecular packing for (I) comprises undulating sheets lying parallel to the $(10\overline{1})$ plane (Fig. 2). Within these sheets, the shortest intermolecular contacts are $C-H\cdots O$ interactions (Table 2).

Experimental

Ethyl-2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate, (II), was prepared from cyclohexanone, sulfur and ethyl cyanoacetate by a one-pot thiolation-heterocyclization reaction (Gewald et al., 1966). A mixture of (II) (3.5 g, 0.015 mol), acetic anhydride (14 ml) and zinc dust (0.883 g, 0.015 mol) was refluxed for 2 h. The reaction mixture was cooled to room temperature and the solid product was recovered. The crude product was dissolved in warm (318 K) methanol (35 ml) and filtered. The product was recrystallized from acetone to yield colourless crystals of (I) (yield 84.3%; m.p. 388 K). IR (KBr, cm⁻¹): 3436 and 3244 (-NH-), 2931 and 2873 (-CH-),

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. The intramolecular hydrogen bond is indicated by a dashed line.

1666 and 1546 (C=O) and 1250 (C-O). Elemental analysis, found: C 58.18, H 6.32, N 5.16%; calculated: C58.40, H 6.41, N 5.24%.

Z = 4

 $D_r = 1.393 \text{ Mg m}^{-3}$

Cut block, colourless

 $0.44 \times 0.30 \times 0.18 \; \mathrm{mm}$

16538 measured reflections

2917 independent reflections

2338 reflections with $I > 2\sigma(I)$

Mo Ka radiation

 $\mu = 0.25 \text{ mm}^{-1}$

T = 120 (2) K

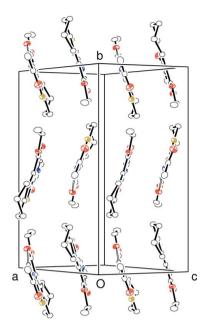
 $R_{\rm int} = 0.039$ $\theta_{\rm max} = 27.5^{\circ}$

Crystal data

C13H17NO3S $M_r = 267.34$ Monoclinic, $P2_1/c$ a = 10.2987 (4) Å b = 16.6174 (5) Å c = 7.8510 (3) Å $\beta = 108.4381 (18)^{\circ}$ V = 1274.63 (8) Å³

Data collection

Nonius KappaCCD diffractometer ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2003) $T_{\min} = 0.897, T_{\max} = 0.958$


Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0407P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 0.574P]
$wR(F^2) = 0.091$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
2917 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
168 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected torsion angles (°).

C1-C2-C3-C4	48.83 (16)	C4-C5-C6-C1	-10.54(19)
C2-C3-C4-C5	-63.48(17)	C5-C6-C1-C2	-0.9(2)
C3-C4-C5-C6	42.28 (18)	C6-C1-C2-C3	-18.7(2)

Figure 2

A view of the unit-cell contents of (I), with H atoms (except H1) omitted for clarity.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1 \cdots O2 \\ C2 - H2A \cdots O2^{i} \end{array}$	0.858 (18)	1.979 (18)	2.6798 (17)	138.1 (16)
	0.99	2.44	3.370 (2)	157

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

The N-bound H atom was located in a difference map and its position was refined freely, with $U_{iso}(H) = 1.2U_{eq}(N)$. The C-bound H atoms were placed in idealised locations (C- \dot{H} = 0.98–0.99 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The methyl groups were allowed to rotate about their local threefold axes to fit the electron density.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallography Service, University of Southampton, for data collection. ABV thanks Mangalore University for the provision of research facilities.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cannito, A., Perrisin, M., LuuDuc, C., Huguer, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635-639.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Gewald, K., Schinke, E. & Bottcher, H. (1966). Chem. Ber. 99, 94-100.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

Ramanathan, J. C. D. G. & Namboothiri, D. G. (1978). J. Indian Chem. Soc. 55, 822-823.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.